Towards a Practical Face Recognition System: Robust Alignment and Illumination by Sparse Representation
نویسندگان
چکیده
Many classic and contemporary face recognition algorithms work well on public data sets, but degrade sharply when they are used in a real recognition system. This is mostly due to the difficulty of simultaneously handling variations in illumination, image misalignment, and occlusion in the test image. We consider a scenario where the training images are well controlled, and test images are only loosely controlled. We propose a conceptually simple face recognition system that achieves a high degree of robustness and stability to illumination variation, image misalignment, and partial occlusion. The system uses tools from sparse representation to align a test face image to a set of frontal training images. The region of attraction of our alignment algorithm is computed empirically for public face datasets such as Multi-PIE. We demonstrate how to capture a set of training images with enough illumination variation that they span test images taken under uncontrolled illumination. In order to evaluate how our algorithms work under practical testing conditions, we have implemented a complete face recognition system, including a projector-based training acquisition system. Our system can efficiently and effectively recognize faces under a variety of realistic conditions, using only frontal images under the proposed illuminations as training.
منابع مشابه
Robust and Practical Face Recognition via Structured Sparsity
Sparse representation based classification (SRC) methods have recently drawn much attention in face recognition, due to their good performance and robustness against misalignment, illumination variation, and occlusion. They assume the errors caused by image variations can be modeled as pixel-wisely sparse. However, in many practical scenarios these errors are not truly pixel-wisely sparse but r...
متن کاملFace Recognition Using Sparse Representation
Many classic and contemporary face recognition algorithms work well on public data sets, but degrade sharply when they are used in a real recognition system. This is mostly due to the difficulty of simultaneously handling variations in illumination, image misalignment, and occlusion in the test image. We consider a scenario where the training images are well controlled and test images are only ...
متن کاملTowards a robust face recognition system using compressive sensing
An application of compressive sensing (CS) theory in imagebased robust face recognition is considered. Most contemporary face recognition systems suffer from limited abilities to handle image nuisances such as illumination, facial disguise, and pose misalignment. Motivated by CS, the problem has been recently cast in a sparse representation framework: The sparsest linear combination of a query ...
متن کاملEfficient Misalignment-Robust Representation for Real-Time Face Recognition
Sparse representation techniques for robust face recognition have been widely studied in the past several years. Recently face recognition with simultaneous misalignment, occlusion and other variations has achieved interesting results via robust alignment by sparse representation (RASR). In RASR, the best alignment of a testing sample is sought subject by subject in the database. However, such ...
متن کاملFace Recognition with Image Misalignment via Structure Constraint Coding
Face recognition (FR) via sparse representation has been widely studied in the past several years. Recently many sparse representation based face recognition methods with simultaneous misalignment were proposed and showed interesting results. In this paper, we present a novel method called structure constraint coding (SCC) for face recognition with image misalignment. Unlike those sparse repres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011